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Abstract. Supply Chain Management (SCM) is an important activity in all producing facil-
ities and in many organizations to enable vendors, manufacturers and suppliers to interact
gainfully and plan optimally their flow of goods and services. To realize this, a dynamic
modelling approach for characterizing supply chain activities is opportune, so as to plan effi-
ciently the set of activities over a distributed network in a formal and scientific way. The
dynamical system will result so complex that it is not generally possible to specify the func-
tional forms and the parameters of interest, relating outputs to inputs, states and stochastic
terms by experiential specification methods. Thus the algorithm that will presented is Data
Driven, determining simultaneously the functional forms, the parameters and the optimal
control policy from the data available for the supply chain. The aim of this paper is to pres-
ent this methodology, by considering dynamical aspects of the system, the presence of non-
linear relationships and unbiased estimation procedures to quantify these relations, leading
to a nonlinear and stochastic dynamical system representation of the SCM problem. More-
over, the convergence of the algorithm will be proved and the satisfaction of the required
statistical conditions demonstrated. Thus SCM problems may be formulated as formal sci-
entific procedures, with well defined algorithms and a precise calculation sequence to deter-
mine the best alternative to enact. A “Certainty equivalent principle” will be indicated to
ensure that the effects of the inevitable uncertainties will not lead to indeterminate results,
allowing the formulation of demonstrably asymptotically optimal management plans.

Key words: supply chain management, simultaneous estimation and optimization, nonlinear
dynamical systems

1. Introduction

Supply Chain Management (SCM) is the integration of key business
processes from end users through the original suppliers that provide prod-
ucts, services and information that add value to customers and other stake-
holders [44]. It is therefore concerned with the organization, the planning and
the qualitative and quantitative determination of material and information
flows both in and between facilities (vendors, plants, sites and distribution
centres). It is a set of important activities in all producing facilities and in
many organizations [43, 66].

These activities are carried out over time, but implementations may con-
sider just the results which can be obtained at a given specific future
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moment in time (static model), or, after having evaluated the current
position, determine also the changes that could be brought about at some
future period in time (comparative statics).

However these approaches do not analyse what happens between ‘now’
and ‘then’. The actual realization of these activities and the pursuit of the
desired goals may flounder because of infeasibilities in the intermediary
period. A model with dated variables seems preferable, which will allow the
required trajectories of the flows to be followed period by period [53, 80,
82, 83].

Data driven modelling techniques will have to be applied to determine
these dynamical systems representations. The functional forms to be used
and the estimates of the parameters of interest so as to relate outputs to
inputs, states and stochastic terms will be so complex that it is not gen-
erally possible to specify a priori these forms or determine the parame-
ters in some simple way. Thus a data driven model must be considered, so
as to determine simultancously the functional forms, the parameters and
the optimal control policy from the data available from the supply chain
(accounting data). A model that uses past data to estimate the supply chain
performance functions based on the chosen inputs, as a results of deci-
sions, states and uncertainty must be applied. The estimated performance
response functions, which account for the nonlinearities and stochasticity
of the system, allow the specification of the decisions and policies that will
optimize the resulting response functions.

The aim of this paper is, therefore, to describe an algorithm to model an
SCM system formally by considering the dynamical aspects of the system,
the presence of nonlinear relationships and unbiased estimation procedures
to quantify the underlying relationships, leading to a nonlinear and sto-
chastic dynamical system representation of the SCM problem. Moreover,
the convergence of the algorithm will be proved and the satisfaction of the
required statistical conditions demonstrated.

To determine a dynamical model of the material and information flows
to solve the SCM problem at whatever level is required, historical flow data
from the organization must be used, which are expressed as time series
of flows. It is notoriously difficult to model vector time series because of
their temporal interactions [32, 39] and to this end a coherent methodol-
ogy for dynamical structures and variables must be applied [38, 70]. The
phenomenon must be studied through a set of dated variables, expressed
through short, noisy, nonlinear time series. For these series the determina-
tion of their short run behaviour, rather than the asymptotic behaviour, is
important [24, 68].

There are many implementations of linear dynamic SCM models [5, 6,
17, 48, 71, 78, 79]. Linear dynamic system models have been suggested to
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regulate the bullwhip effect dynamically [18, 19], and so extend the tradi-
tional analysis [12, 45, 46].

However linear dynamical systems may not provide very realistic models
of an SCM problem, since one of the features of these systems is that at
any period of time, an action can be taken whose effects can be annulled
at the very next period by a suitable reverse action [10]. Thus time can run
in either direction, which is generally a very unrealistic property of business
processes. Dynamic linear systems are unlikely, therefore, to be good repre-
sentations of the given management process.

Some implementations have also been formulated with nonlinear dynam-
ical systems of various kinds, both in a simulation and in an optimization
context [30, 31, 49, 55, 56, 63, 64], but in none of these papers was the esti-
mation problem for the functional forms and the parameters analysed or
applied. This is an important requirement, as shall be shown.

Linear dynamical models, static and comparative static models, are special
cases of nonlinear dynamical system and so are dominated by the latter, since
they can be obtained as special cases of the latter. The nonlinear dynamical
systems will therefore provide solutions which are as good, or better than
the solutions obtained with the static or linear dynamical models.

Dynamic multi-item multi-level capacitated lot sizing problems, which
have been extensively studied [11, 28, 29, 69], introduce further important
modeling properties for SCM problems. Setup costs and machine setup
times are important elements of lot sizing problems of all types and are
usually sequence dependent. In some applications [74] sequence dependen-
cies of tasks are not considered, while in other applications stochastic
disturbances (e.g. breakdowns) are neglected [S1, 52], which can be very
important [65].

Stochastic considerations raise, once again, the problem of specifying
and estimating the model to be applied. Intuitive validation of functional
forms and the determination of the values to assign to parameters are very
difficult to formulate, especially in nonlinear models, so appropriate estima-
tion techniques must be applied, to obtain accurate models of the SCM
problem envisaged.

For the reasons given above, in this paper a more general formulation
of a SCM problem will be presented, which will consider the following
elements:

1. A representation of the problem by postulating a dynamical system:
e to produce more incisive policies, with explicit dated flows so as
to ensure feasibility of the solution trajectory throughout the pol-
icy interval;
® by using a dynamical system, which is a precise mathemati-
cal object [38] the representation of the given SCM problem is
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inserted in a formal mathematical structure to ensure that the
derivations from this structure will be valid.
2. Nonlinear relationships are postulated for the model:

e for generality, from the data of the SCM problem posed, specifi-
cation of the nonlinear functional forms must be envisaged;

® so the functional form of the mathematical structure will depend
on the data.

3. The solution to the SCM problem may be cast as an extremal solution:

e the system to be solved will involve a minimization (maximiza-
tion) problem or an optimal control problem.

4. The presence of stochastic elements are postulated;

e this will require that the parameters of the relationships must
be estimated by proper statistical techniques for accuracy and to
avoid bias;

® since the processes to be estimated may be nonlinear, dynamic
and stochastic, the estimation must be carried out simultaneously
with the optimization, so as to obtain an optimal solution in the
estimation and in the control space.

5. A “Certainty Equivalent principle” [4, 13, 42, 72, 76], should be applied:

e to render determinate the stochastic solutions that would be
obtained;

® to apply adaptive techniques or periodic reassessments of the
plans, as environmental and exogenous conditions change [58].

It will be shown that such a dynamic nonlinear stochastic system formu-
lation of an SCM model will avoid the various limitations indicated above
and provide formal models, which are demonstrably valid, given certain
mild conditions regarding the environment.

To the best of our knowledge the approach suggested here is new as
solutions are determined to the SCM problems by a nonlinear dynamic
stochastic system representation, in which the optimal control problem is
solved simultancously to determine the parameter values in the estimation
space and the controls in the decision space and then applying a certainty
equivalence principle.

Thus the major question in formulating the properties of this algorithm
is to ensure that all its parts are well defined and coherent, which is the
concern of the rest of this paper.

The outline of the paper is the following. In the next section, the prop-
erties of a dynamical system representation will be analysed to show how a
supply chain problem may be recast as a nonlinear dynamical system. Fur-
ther, the local analysis of time series that is required here is best handled
by such an approach [24, 68, 70]. In Section 3 the specification of the sys-
tem will be given, the algorithm to solve it and its statistical properties will
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be presented. Then, in Section 4 the mathematical properties of the algo-
rithm will be formulated, as well as the convergence conditions. In Section
5 the appropriate conclusions will be drawn.

2. Dynamical Systems and their Properties

Mathematical System Theory deals essentially with the study of the dynam-
ical relationships of systems under various conditions, more general than
those which define difference and differential equation systems [81]. A
Dynamical System is a precise mathematical object, [37, 38] and given the
flows of the activities of the phenomenon the input-output relationships
must be estimated by appropriate estimation methods.

Not every relationship can be modelled by mathematical system theory,
since a representation which is nonanticipatory is required [38], while the
condition that the functionals be sufficiently smooth which was previously
required [38], may be wavered.

Dynamical Systems have been defined at a high level of generality, to
refine concepts and perceive unity in a diversity of applications and by
appropriate modelling, whole hierarchies of phenomena can be represented
as systems defined at different levels. This is very important in living
organisms [53], complex machines (computers, vehicles) [83] and other phe-
nomena, [80, 82]. Again SCM exhibits hierarchies of representations and
dynamical interactions.

DEFINITION 2.1. [38]. A Dynamical System is a composite mathematical
object defined by the following axioms:

1. There is a given time set T, a state set X, a set of input values U, a
set of acceptable input functions Q=w: Q2— U, a set of output values
Y and a set of output functions T'=y: T — Y.

2. (Direction of time). T is an ordered subset of the reals.

3. The input space 2 satisfies the following conditions.

(a) (Nontriviality). € is nonempty.

(b) (Concatenation of inputs). An input segment wg, ], @ € 2
restricted to (11, L]NT. If w,w’ € and t; <, <13 there is an
w” € such that wf, | =wq, ) and o, =, ..

4. There is a state transition function ¢:7 x T x X x Q— X whose value
is the state x(¢r) =¢(t; T, x, w) € X resulting at time €T from the ini-
tial state x =x(tr) € X at the initial time t € T under the action of the
input w € Q. ¢ has the following properties:

(a) (Direction of time). ¢ is defined for all ¢ > 7, but not necessarily
for all r <.
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(b) (Consistency). ¢(t;t,x,w)=x for all t €T, all x€ X and all we Q.
(c) (Composition property). For any #; <, <t3 there results:

p(t3; 11, x, w) =@(t3; b, p(t2; 11, X, W), W)

for all x€ X and all we Q.
(d) (Causality). If o,0" € Q and ¢ = a)ér,t] then ¢(t;1,x,w) =
o(t; 7, x,0).

5. There is a given readout map n:7 x X — Y which defines the output
y(t) =n(t,x(@)). The map (r,t]— Y given by o +— n(o, ¢(o, 7, x, ®)),
o € (t,t], is an output segment, that is the restriction y(;, of some
yel to (z,1].

The following mathematical structures in Definition 2.1 will be indicated
by:

e the pair (r,x),teT,x€X Vrt is called an event;
e the state transition function ¢(x,, u,) is called a trajectory.

Consider a department, a plant or a firm, see [21] for specific imple-
mentations. The set U, defined conveniently may differ from application to
application, indicating the dated quantities of raw materials, energy, labour
and so on: activities applied on a specific set of machines, department,
plant or firm. The historical data is obtained from analytical and budget
accounts, the ‘Gozinto’ charts [8], as well as many Information Technol-
ogy (IT) tools. Consequent to this, through the input and output func-
tions a set Y of dated quantities in output is obtained. As the process
may be highly nonlinear with marked lags, intermediary vectors, indicated
as states are used with an opportune transition function. The states are
related to the outputs obtained in time. The effect of all the activities at
a moment ¢ on the state of the system is called an event. A trajectory may
be understood as the graph of the state as a consequence of the variation
in time.

This notion of a dynamical system is very general and a certain degree
of additional structure may be imposed, so that the results gain specificity,
without depriving the modellisation of much of its intrinsic interest.

As defined in the above definition, the state transition functional form
and the given readout map are assumed not to change in structure over
time. That is the functional form ¢(.) and 5(.) and eventually an additional
performance function c¢(.) are not time dependent, although time may be
an argument of these functions. This implies that the functional forms are
not evolving over time in the sense that they are consistent over time. Thus
another way to model phenomena is through dynamical systems in the
input/output sense.
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DEFINITION 2.2. A Dynamical System in an input/output sense is a
composite mathematical object defined as follows:

1. There are given sets T, U, 2, Y and I' satisfying all the properties
required by Definition 2.1.
2. There is a set A indexing a family of functions

F={fo: TxQ—>Y aecA}

each member of F is written explicitly as f, (¢, w) =y(¢) which is the
output resulting at time ¢ from the input w under the experiment
a. Each f, is called an input/output function and has the following
properties:

(a) (Direction of time). There is a map t: A— T such that f,(, w) is
defined for all r > («).

(b) (Casuality) Let r,reT and 7 <t If 0,0’ € Q2 and w4 :wzm],
then f,(t,w)= f,(t, ") for all @ such that t =(«).

While the input/output approach may determine a family of functions,
the state space approach represents the trajectories in the way indicated,
through a unique function, so the latter approach is intuitively more
appealing, especially in applications. However, both representations show
the relationships of the time series of the single inputs on the state and the
outputs. The first representation defines a unique mapping, while the sec-
ond representation does not.

The representations are equivalent. It is easy to transform a given system
from a state space formulation to an input/output formulation and vice
versa [2, 38], so each may be used as convenience suggests.

Of course, by imposing suitable smoothness conditions on the system, it
can be represented as a system of differential equations and solved by stan-
dard techniques. To this end:

DEFINITION 2.3. A dynamical System is smooth if and only if:

1. T =R the real numbers (with the usual topology).
2. X and Q are topological spaces.
3. The transition map ¢ has the property that

(T, x,0) > ¢(; T, x,0)

defines a continuous map 7 x X x @ — CY(T — X) , where C/(T —
X) denotes the family of functions that are once continuously
differentiable.
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It is now possible to indicate when a Dynamical System defined above
can be solved as a system of differential equations, by making use of well-
known classical techniques [14].

THEOREM 2.1 [38]. Let a Dynamic System, in the sense of Definition 2.1
which is smooth, in the sense of Definition 2.3, possess these further charac-
teristics:

1. T=R, X and U are normed spaces,

2. Q is the normed space of continuous functions 7 — U with |w| =
sup,cr [lu ()|

3. ¢(;1,x,w) e CY(T — X) for each 7, x and w and the map T x X x
Q— X given by (t,x,w)— ¢(t; T, x, w) is continuous for each ¢, with
respect to the product topology.

Then the transition function ¢ of the smooth dynamic system is a solution
of the differential equation

d
d—f=f<r,x,mw>

where the operator 7, is a map Q— U given by o> u(t) =w(?).

In control theory there are many applications of differential systems of
equations to process control [25, 26, 62, 77]. Thus this characterization
provides an equivalence between the types of systems that are of concern in
SCM and those representable by systems of ordinary and/or partial differ-
ential equations.

It cannot be assumed generally that a Dynamical System satisfies the
conditions of smoothness, nor that it will meet the necessary and sufficient
conditions for an optimal control to exist. Thus in general, the Dynami-
cal Systems to be dealt with may have an awkward structure but through
the combined estimation and optimization approach a sufficiently good
approximation may be obtained with the required characteristics [61].

A sufficiently general representation of a dynamic system may be for-
mulated by applying Definition 2.1, recalling the equivalence of an input—
output system and a system in state form:

X1 = (X, uy), (1)
Y =n(x), (2

where x; € X € R” may simply be taken as a r-dimensional vector in an
Euclidean space X, indicating the state of the system at time ¢, u, € U C RY
may be taken as a g-dimensional vector in an Euclidean subspace U of
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control variables and y, €Y C R” is a p-dimensional vector in an Euclidean
space Y of output variables, in line with Definitions 2.1, 2.2 or 2.3.

The fundamental problem posed by such system is to determine suitable
control policies through time to obtain various types of solutions, such as:
optimal solutions, equilibrium solutions, periodic solutions, quasi-periodic
solutions and eventual chaotic solutions (perhaps to be avoided) [57] and
to be able to compare them before executing the proposed activities. Thus
a plethora of conditional trajectories can be formulated and compared, so
that the best, according to the firm’s aims, can be considered. To this end
a number of concepts are required.

The definition of a dynamical system is based on defining an interme-
diary set of states and a transition function or a family of functions. Nei-
ther of these constructions is unique, so if it is desired to represent a SCM
system by such structures, equivalence of the possible structures must be
shown.

DEFINITION 2.4. Given two states x;, and %;, belonging to systems S and
S which may not be identical, but have a common input space 2 and
output space Y, the two states are said to be equivalent if and only if for
all input segments wy, ;) € 2 the response segment of S starting in state x,,
is identical with the response segment of § starting in state X5 that is

Xt gito < 77(t, go(xtoa w[lo,l)))
:ﬁ(t, (Z)(.}eto, w[[(),t))) VtET, togt, V w[lO’I)GS, S. (3)

The systems S and S may be two models of a SCM system solved with
different control policies, or various alternative models of the phenomenon.

DEFINITION 2.5. A system is in reduced form if there are no distinct
states in its state space which are equivalent to each other.

DEFINITION 2.6. Systems S and § are equivalent S=3S if and only if to
every state in the state space of § there corresponds an equivalent state in
the state space of S and vice versa.

A number of important questions must be asked of the system descrip-
tion of the SCM representation:

e Can a certain state s*€ S be reached from the present state, or if the
dynamical system attains a given state x at time 0 can it also be made
to reach a certain state x*. Evidently it is required to determine the set
of states reachable from a specific state x;.
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e Can a dynamical system be driven to a given state by an input u.
Thus controllability is concerned with the connectedness properties of
the system representation.

e Reachability and controllability lead naturally to the determination of
a dynamical system’s observability, which provides the conditions to
determine the given actual state uniquely.

e The stability of the system is important since it provides conditions on
the way the trajectories will evolve, given a perturbation or an admis-
sible control.

These conditions are very important, since they allow trajectories to be
defined, the initial point of trajectories to be determined and their stability
properties to be derived. Moreover they can be applied at any moment in
time to determine if the goals of the SCM are still attainable and at what
cost. Reachability, controllability and stability are seldom formally exam-
ined and yet at every period exogenous events can arise to nullify even the
best plan formulated, so these are important instruments for SCM.

DEFINITION 2.7. Given a state x*€ M C X, it is reachable from the event
(tp, xo) at time T if there exists a bounded measurable input u, € Q2 such
that the trajectory of the system satisfies:

xl():x()’ (4)
xr=x"* Vx,eM, 0<t<T. (5)

The sets of states reachable from x;, is denoted by:

N(xg) = U {xr|xr reachable at time T} (6)

0<T<0

the system is reachable at x,, if N(x,) =M and reachable if N(x,) =M
VxeM.

DEFINITION 2.8. A system is locally reachable at x;, if for every neigh-
bourhood N(xy, h) of x;, M(x,) NNy, is also a neighbourhood of x,, with
the trajectory from the event (1, x,) to (x,) N Ny, lying entirely within
N,,. The system is locally reachable if it is locally reachable for each x € M.

These definitions lead to an important property for many systems,
namely that reachability may not be symmetric, that is: if x7 is reachable
from x,, the converse may not hold. Thus a weaker notion of reachability,
which is always found in linear systems, may be opportune.
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DEFINITION 2.9. Two states x* and x are weakly reachable from each
other if and only if there exist states x°,x',...,x¥ € M such that x* =
x*, x¥ =2 and either x’ is reachable from x'~! or x'~! is reachable from
x (Y1=1,2,...,k). The system is weakly reachable if it is weakly reach-
able from every x € M.

THEOREM 2.2. The following implications apply:

o If the system is locally reachable then it is reachable;
o if the system is reachable then it is weakly reachable.

Proof. Immediate from the definitions. O

COROLLARY 2.1. For constant linear systems the following are equivalent:
® g system is locally reachable if and only if it is reachable;
® g system is reachable if and only if it is weakly reachable.

Proof. Immediate from the definitions. O

DEFINITION 2.10. State x;, of a system is controllable if and only if
there exists a u € Q such that:

(p(t;t()v-xt()’u):@' (7)

The system is said to be controllable if and only if every state of the system
is controllable.

THEOREM 2.3. A4 system which is controllable and in which every state is
reachable from the zero state (0) is strongly connected.
Proof. Follows from Definitions 2.10 and 2.7 (see [38]). O

DEFINITION 2.11.

® A simple experiment is an input/output pair (up, ), yi,,n) that is, given
the system in an unknown state an input up,, is applied over the
interval of time (¢,%) and the output yy, , is observed.

e A multiple experiment of size N consists of N input/output pairs
Wy Vo) =12, N where on applying on the ith realization
of the N systems the input (uy, ,) the ith output yj, , is observed.

DEFINITION 2.12. A system is simply (multiply) observable at state x,, if
and only if a simple experiment (a multiple experiment) permits the deter-
mination of that state uniquely.
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DEFINITION 2.13.

e Two systems are simply equivalent if it is impossible to distinguish
them by any simple experiment.

e Two systems are multiply equivalent if it is impossible to distinguish
them by any multiple experiment.

THEOREM 2.4. If two systems are simply equivalent and strongly connected,
then they are multiply equivalent. O

THEOREM 2.5. If two systems are multiply equivalent then they are equiv-
alent (Definition 2.6). O

DEFINITION 2.14. A system is initial-state determinable if the initial
state xo can be determined from an experiment on the system started at x.

THEOREM 2.6. A system is in reduced form if and only if it is initial-state
determinable by an infinite multiple experiment. O

Definitions 2.11-2.14 and the results 2.4-2.6 formally justify the possibil-
ity of defining one or more representations of the dynamical system con-
sidered at a chosen level of detail. Notice however the distinction between
systems that are simply equivalent and multiply equivalent. This distinc-
tion is crucial, if dynamical systems are considered, while with comparative
static models, the distinction does not apply. This is one of the many rea-
sons that one should insist on solving SCM dynamic estimation problems
with a data driven formulation.

It is usual, since stability for nonlinear systems is an equilibrium con-
cept, to treat such systems by a representation as a continuous time sys-
tems, i.e. a smooth system as in Definition 2.3. It is also usual to consider
the system as an autonomous system, with no input. Such a system can
also be considered as an approximation to the more complex real system.

Thus consider:

X=g¢(x,t), 3)
x(tp) = xo (9)
an autonomous nonlinear system, while xq is the initial state of the system.

DEFINITION 2.15. The function ¢ is said to be locally Lipschitz continu-
ous in x if for some A > 0 there exists an / >0 such that:

lo(x1,t) —@(x2, 1) I<I|x1—x2| Vx1,x0€N(0,h),t>0. (10)

The constant [ is called the Lipschitz constant.
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Without loss of generality it can be assumed that an equilibrium point
for the system is the origin, i.e. x*=0. We will assume this is so in the rest
of this section.

DEFINITION 2.16. x* is said to be an equilibrium point of (8) if
o(x*,1)=0, Vr >0.

THEOREM 2.7. If x =0 is an equilibrium point of system (8), ¢ is Lipschitz
continuous in x with Lipschitz constant | and piecewise constant with respect
to t then the solution of x(t) satisfies:

|x0 €7 > x (1) 1= x0 |7 Vx(t) eN(0,h), V>t (11)
Proof. see [70] O

DEFINITION 2.17. The equilibrium point x =0 is called a stable equilib-
rium point of the system (8) if for all ¢y, € >0, there exists (o, €) such that:

| xo|<8(t,€)=|x(t) |<e Vt=1. (12)

The solution of the dynamic system given in Equations (1) and (2) may
be determined in a number of different ways, depending on the structure
of the functions that are given, see [9, 35, 38, 67].

In general, the dynamical system representation of a SCM system, per-
mits to verify.

e The dynamic system representation can be identified, i.e. the func-
tional form of the relationships is determined and the optimal value
of the parameters for the chosen form are estimated.

e The optimal control which determines the final event is reachable, and
the system must be controllable throughout the sequence of events
comprising the trajectory.

e The system should be observable throughout in case remedial action
should be taken, which would otherwise be impossible and to ensure
that the estimation may be carried out.

e The given solution is stable, so that small perturbations will not give
rise to explosive perturbations or to chaotic behaviour.

If these conditions are not verified, this will suggest strategic changes to
the SCM system or a profound modification of policies: aspects which are
difficult to determine in advance.

Computationally, these aspects are handled by adding appropriate con-
straints in the mathematical program which will be formulated in Section



516 L. D. GIACOMO AND G. PATRIZI

3 [20, 22, 59]. As these aspects are rather specialized and add no addi-
tional theoretical points to the specification of the algorithm, they will not
be dealt with here, although computationally they are important.

The specification of the model that has been adopted appears to allow
correct application to policy determination in SCM systems, as well as to
determine its control functions and many other aspects.

The advantage of such an approach is that through the conditions that
can be formulated regarding the reachability, the controllability, the observ-
ability and the stability of such systems, crucial questions which are invari-
ably posed by management can be answered.

The data driven approach which is adopted, does not impose a priori
restrictions on any aspect of the representation, except for the mild limi-
tations indicated in the definitions above. Thus the restrictions, such as line-
arity, or stationarity of time series, which lead to incorrect policy formulation
or a limited analysis of important events, need not occur in this approach.

3. Description of the Algorithm

Consider the monitoring of a set of activities in time of a Supply Chain
at a given level of aggregation, which may be at the department, plant or
firm level, or a hierarchical system developed through all these organiza-
tional structures. Although the accuracy of the representation may depend
on the sampling strategy and the time interval, these aspects will not be
considered here.

Thus a given finite dimensional estimation and optimization problem will
be considered, which may well be nonlinear and dynamic [9].

Consider the data set of a phenomenon consisting of measurements
(ys, X uy) over (t=1,2,..., N) periods, where it is assumed, that y, € R? is
a p-dimensional vector, while x; € R” is a r-dimensional vector of explana-
tory or state variables of the dynamic process of dimension. Also, u, is a
g-dimensional vectors of control variables. It is desired to determine func-
tional forms ¢: R"tY — R” and n: R — R” and a set of suitable coefficients
® € R™ such that:

T
Min J= Z c(xe, Usy Y1), (13)
t=N+1
x”rl:(p(xt,u,,yt,wt) Vi=T+1,...,7T -1, (14)
ve=n(up,v) Ve=T+1,...,7T, (15)

where w,, v, are stochastic processes also to be determined.
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Equation (13) is the objective function for the supply chain and (14)
and (15) in a state space formulation and a similar representation may be
adopted for the the input—output formulation [38, 73].

The systems (13)—(15) could be estimated by a maximum likelihood
method so as to minimize the random errors, indicated by w, € R" and
v; € R? such that they will have minimum variance and zero mean value
and then on the quantified model the optimal control problem could be
solved, usually through an appropriate optimization problem [77].

However, for this type of model with serially correlated disturbances, which
are also correlated with the control variables, its estimation will be biased
and the necessary least squares properties to ensure an asymptotically cor-
rect estimate may only be fulfilled in exceptional cases. Thus the two-stage
approach, indicated above, is inappropriate [34].

It is important to apply a suitable data driven statistical method to deter-
mine the most appropriate statistical form and the most precise values of
the parameters, as when implemented correctly with regard to an accurately
specified functional form. Such a method will provide estimates of param-
eters that have the following properties [1, 36, 51]:

1. The parameter estimates are unbiased, this means that:
® as the size of the data set grows larger, the estimated parameters
tend to their true values.

2. The parameter estimates are consistent, which require the following
conditions to be satisfied:

® The estimated parameters are asymptotically unbiased,
® The variance of the parameter estimate must tend to zero as the
data set tends to infinity.

3. The parameter estimates are asymptotically efficient,

e the estimated parameter is consistent;
® the estimated parameter has smaller asymptotic variance as com-
pared to any other consistent estimator.

4. The residuals have minimum variance, which will require to ensure

that this is so:
e the variance of the residuals must be minimum;
e the residuals must be homoscedastic;
¢ the residuals must not be serially correlated.

. The residuals are unbiased (have zero mean):

6. The residuals have a noninformative distribution (usually, the Gauss-
ian distribution). If the distribution of the residuals is informative, the
extra information could somehow be obtained, reducing the variance
of the residuals, their bias, etc. with the result that better estimates are
obtained.

N
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In short, through correct implementation of statistical estimation techni-
ques the estimates are as close as possible to their true values, all the
information that is available is applied and the uncertainty surrounding the
estimates and the data fit is reduced to the maximum extent possible. Thus
the estimates of the parameters, which satisfy all these conditions, are the
‘best’ possible in a ‘technical sense’ [1].

Instead, suppose that all the statistical properties that a given estimate
must fulfill are set up as constraints to the maximum likelihood problem
to be solved, then the parameters are defined implicitly by this optimiza-
tion problem, which can be inserted into the optimal control system for
the policy determination, so that statistically correct estimates will always
result. Thus the solution yielding the best policy can be chosen, where
N +1,...,7 is the forecast period, by solving an optimization formula-
tion of this complex problem [75]. By recursing on the specifications, i.c.
by changing the functional form, better and better fits can be obtained.
At each iteration, the best combination of parameterization and policy is
obtained.

The unknowns to be determined are the input and output variables con-
sidered and the parameters of the functional form specified in the current
iteration, indicated as ® ={6;, 6} C R™, respectively, for (14) and (15). Note
that m may be much larger than 2r + ¢ + p 4+ 1 the number of variables
present in each system, since the system is nonlinear.

The mathematical program will be formulated with respect to the resid-
ual variables, but it is immediate that for a given functional form, the
unknown parameters will be specified and thus the unknowns of the prob-
lem will also be defined and available. Thus the mathematical program is
fully specified for each functional form to be considered.

Using the notation given above, the residual terms are given from the
Equations (14) and (15) as:

wi=£i+1_(p(£i7ﬁis5}i:91) i=1725---aNa (16)
Vi =Yipin(xi, ui,v::02) i=1,2,... N, (17)

where ~, as usual indicates the historical values of a variable and thus suit-
able values of 6y, 6, must be determined by the mathematical program, such
that all the constraints expressed in terms of w;,v; Vi are specified.

The homoscedasticity condition on the residuals is obtained by regress-
ing the original variables of the problem, indicated by the data matrix W,
on the normalised square of the residuals, which are indicated, respectively,
by: gw, g». This leads to a set of nonlinear equations in the squared residu-
als to be determined. The x? test is applied at a confidence level of (1 —a)
with m — 1 degrees of freedom and a significance level of « [7].
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The combined model to be solved with the notation given above, by a
suitable optimization routine is the following:

T
Min J = Z c(xi,ui,yl-), (18)
i=N+1
Xit1 = @(xi, u;, yi, w; :61), (19)
Yie1 = n(xi, u;, v;:62), (20)
| X
— > w; =0, 1)
N i=1
|
LI (22)
N i=1
|
i<k, @
i=1
|
S <k (24)
i=1
| X
—€) < — Wi <€, 25
€0 N 2 VW € (25)
|
—61<N;wiwi—1< €1, (26)
|
_62<N;Uivi—1< €, (27)
|
—€3<ﬁ§wwi—1< €3, (28)
| X
—asy 2 Wivi—1 < €4, (29)
T
_€2s<N§vi—swi—s< €25, (30)
| X
_€2s+lgﬁzwiwl¥s< €25+1> (31)

i=1

N
1
—€25 42 < N 21: ViVi—g < €2542, (32)
i
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LN
€3Sy ; ViWwi_y < €543, (33)
| N
—€2544 < N z_; WiVi—y < €244, (34)
1 _ N
S8 W)W g, = <P, (35)
l T T —1qyT _ E < 2 36
2gu (W )T g, 5 S Xl—a:p—1> (36)
1N
—€2r+1 <ﬁ2wlzr+l < €2r+1r=394s ) (37)
i=1
1 Y 2r 2r! 2r
N;wi Sﬁawr=3,4,..., (38)
1N
—€241 < N Z v < er=3,4,..., (39)
i=1
N
1 2r 21" 2r
szi < poi =34, (40)
i=1
xieX, y,-EY, u;elU, w;eW, vieV. (41)

We shall show that the conditions indicated above are met for an opti-
mal solution of the programs (18)—(41).

The abstract model of the dynamical systems (13)—(15) given by the sys-
tem of Equations (19) and (20), is to be optimized with regard to a given
merit function (18) such that the sum of squares of the residuals to be less
than a critical value k,, k, which can be decreased by dichotomous search
at every iteration, until the problem does not yield a feasible solution.

The least values obtained for these parameters, while retaining a feasi-
ble solution to the whole problem, are equivalent to a minimization of the
statistical estimation error and of a maximization of the maximum likeli-
hood, under appropriate distributional assumptions concerning the residuals.

THEOREM 3.1. Let the constrained minimization problems (18)—(41) have an
optimal solution, then the residuals {w;|i €{1,2,...,N}} {vili €{l,2,...,N}}
have zero mean, are serially uncorrelated and homoscedastic with finite mini-
mum variance.



NONLINEAR MODELIZATION OF OPERATIONAL SUPPLY CHAIN SYSTEMS 521

Proof. The optimal solution must satisfy all the constraints of the prob-
lem, and assume a minimal value of the objective function. Satisfaction
of (21) and (22) ensure that the mean of the residuals be null, (25)-(34)
force the residuals to be serially uncorrelated up to lag s, while (35) and
(36) ensure the homoscedasticity of the residuals. The existence of a solu-
tion ensures that a finite minimum has been identified for the value of the
objective function. If this value is just a local minimum, by adding suitable
upper bounding constraints, lower local minima can be determined, until
the global minimum has been generated. O

The theorem states that Conditions 4 and 5 hold for the model and the
data.

Moreover to ensure that these conditions hold throughout the possible
variation of the independent variables, the residuals must be homoscedas-
tic [41] and thus satisfy (35) and (36).

Further, all the serial correlations between the residual are not significantly
different from zero, as enforced by the constraints (25)—(35).

The next lemma and in particular the corollaries which follow prove that
conditions 2 and 1 above, given the results of Theorem 3.1, hold and so the
estimates of the parameters are consistent and unbiased.

LEMMA 3.1. [16]. Any rational function or power of a rational function
of the sample moments, converges in probability to a constant, obtained by
substituting throughout the corresponding population moments, provided that
the latter exists and that the resulting expression is well defined. O

COROLLARY 3.1. Let the constrained minimization problems (18)—(41) have
an optimal solution, with minimum values for the variances of the residuals,
as the sample size increases, then the constraints (21)—(40) will tend to their
constant population values.

Proof. Suppose that the constrained optimization problem has optimal
solutions as the sample size increases then, the sample moments will con-
verge in probability to their population values, by Lemma 3.1.

The constraints (21)—(34) as well as (37)—(40) are sample moments, so they
will converge in probability to their population values, the ones indicated
by (21)-(34) to zero and of the second group, those representing the odd
moments of the distribution, indicated by (37) and (39), will converge in
probability to their population value of zero, while the even moments will
converge in probability to their population values. O
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Specifically, the definition of an unbiased estimator is:

DEFINITION 3.1. Let §, be an estimator determined for a sample of size
n of the population value 6 i~n the functional form f(x;,0); 6, is said to be
an unbiased estimator if E{6,}=6.

COROLLARY 3.2. If the constrained minimization problems (18)—(41) has
an optimal solution, the solution 6 is an unbiased estimator of the popula-
tion value.

Proof. The optimal solution of the constrained minimization problems
(18)—(41) is the sample estimator 0,;‘:5,1 and is obtained as a rational func-
tion of the sample moments. By Corollary 3.1 and Lemma 3.1 the sample
values converge in probability to the population values. O

The constraints (37)—(40) are sample moments of the probability distri-
bution function of the residuals which are made to assume given values in
terms of the variance o2 and its higher powers. These constraints enforce
the residuals to have a noninformative distribution, here a Gaussian, fact
reinforced by the next result:

THEOREM 3.2. [50]. Let the constrained minimization problems (18)—(41)
have a solution and let the regression function and its derivatives up to the

third order with regard to all arguments be bounded; then (5 —9) A/n is nor-
mally distributed as the sample size n — Q.

Thus the condition (6) is also met. In particular, notice that if the con-
ditions of Theorem 3.2 are not met, the sample values of the estimated
parameters from the true parameter may not be distributed according to
the normal distribution requiring different tests of significance and test of
hypotheses. However, Conditions (1) and (2) will be satisfied.

Condition (3), which is also very important will hold in all cases that
the constrained minimization problems (18)—(41) has a solution, as the next
theorem shows.

THEOREM 3.3. [50]. Let the constrained minimization problems (18)—(41)
have a solution then the estimator 6 is asymptotically efficient.

Finally a result can be presented showing that this constrained minimiza-
tion problem (18)—(41) will dominate the solutions obtainable by the tradi-
tional three phase procedure, since whenever the latter has a solution, the
new procedure will also have a solution, but not converely.
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THEOREM 3.4. Let the given optimal control problem as described in (13)—
(15) have a unique solution and let all the conditions of Jennrich [34] be met,
so that the solution of the maximum likelihood estimate of the unconstrained
problem is well defined. Then, the solution of optimal control problems (13)—
(15) will be equal to the solution of the constrained optimization problems
(18)—(41).

Proof. For a given set of functional forms the two sets of estimates will
be equal, as the conditions of Jennrich are equivalent to the sets of con-
straints (19)—(41). Thus the resultant optimization problems are identical
and their solution, as it is unique, will be the same. O

4. Convergence Results

The aim of this section is to describe an iterative procedure to minimize a
given function subject to equality and inequality constraints, by solving a
linear complementarity problem at each iteration, subject to a suitable trust
region defined by a set of inequalities and to prove its general convergence
conditions. These proofs are directly relevant to the optimal control prob-
lem that has been formulated, since it provides the conditions under which
it can be solved.

Many successive (recursive) quadratic programming methods have been
proposed to solve the general constrained nonlinear optimization problem,
all of which use active set strategies and suitable line search algorithms.

The existence of a general solution procedure for the linear complemen-
tarity problem [60] permits incorporating this algorithm recursively in an
optimization algorithm and so to avoid the use of active set strategies, to
handle inequality constraints. This may be beneficial if the quadratic objec-
tive function is not convex.

The determination of a step-length by an appropriate line search
algorithm also often proves troublesome for general problems. The imple-
mentation of trust region algorithms for unconstrained optimization can
partly offset some of these difficulties and, moreover, global convergence
results may be given under very mild assumptions on the function.

By using the linear complementarity algorithm, mentioned above, in a
recursive quadratic programming framework with a trust region formed as
a box around the iteration point, when convenient, all the best features of
the various methods can be obtained and therefore powerful results and a
fast easily implementable algorithm can be defined.

Consider the following optimization problem:

Min Z=f(w) f:R"—R, (42)
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gw)>0 g:R"— R?, (43)
h(w)=0 h:R"— RY. (44)

The proposed algorithm consists in defining a quadratic approximation
to the objective function, a linear approximation to the constraints and
determining a critical point of the approximation by solving a linear com-
plementarity problem, as given in [60].

Expanding the functions in a Taylor series, at the given iteration point
w*, the equality constraints may be eliminated simply by converting them
into p+ 1 inequality constraints. Thus:

h(w) = h(w*) + Vhw*) (w —w*) >0, (45)
—ef h(w) =—e] (h(w") + Vh(w")(w —w")) > 0. (46)

Unconstrained variables must be transformed into nonnegative variables
for the LCP algorithm. So let:

¢ =Inf{w; [w; €{g(w) =0, h(w) =0}, (47)

where ¢ is a suitable lower bound to the unrestricted variables, which will
be expressed as:

xi:w,-—{ 20 (48)

Should there be no lower-bound specifiable for a variable, then as it is well
known, the variable can be represented as the difference of two nonnega-
tive variables.

A set of trust region constraints can be imposed on the problem as a
system of linear inequalities centered around the iteration point, to limit
the change in the possible solution. Note that such a set of inequalities has
quite different properties to the usual trust region constraint imposed in
Nonlinear Optimization [15]:

Dx+d>0, (49)

where D € R"*" is a suitable matrix which may be changed at every itera-
tion and d € R" a suitable vector. These can be included in the inequalities,
so the problem to be solved iteratively is:
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Min f(x)=f*+e.0) +Vf(x* +e,0)(x —x*)

F =NV F (e, 0) (0 —x5), (50)
s.t. g(x) =g(x* +e,0) +Vgx* +e,0)(x —x*) >0, (51)
x>0, (52)

where g: R" — R"*P+4+1 and the constant terms due to the transformation
can be disregarded in the derivations.

To find an initial feasible solution consider the following optimization
problem:

Min v’ v, (53)
s.t. g(x)+v =0, (54)
x>0, (55)
v=0, (56)

where g: R" — RPHa+!,

It is immediate that an optimal solution to the above problem, if it
results in a value of the objective function equal to zero is a feasible solu-
tion to the main problems (42)—(44). The optimization problems (53)—(56)
may be solved by the same procedure as the original problem, which will
be described below. The algorithm converges to a global minimum, as it
will be shown, so that if the objective function value of (53) is different
from zero, the original problems (42)—(44) will have no feasible solution.

Moreover, a feasible solution to the problem (42)—(44), if it exists, may
be obtained with the algorithm for any starting point x’ by determining
suitable values to the elements of the vector v >0 such that each constraint
is feasible.

The two resulting quadratic problems (50)—(52) and (53)—(56) when
transformed into linear complementarity problems can be solved by a lin-
ear programming routines, as indicated in [60]. The new solution point to
problems (50)-(52) will always exist, whenever the trust region is included
in the problem and will lie either inside the trust region or on a trust
region constraint.

Whenever this point occurs inside the trust region, then it is an approx-
imate stationary point. If the solution point occurs on a trust region
constraint and the solution is feasible while a reduction in the objective
function has occurred, the solution point is taken as the new starting point
and a new iteration is started. Otherwise, if the new point is infeasible,
the trust region is reduced. Finally if there has been an increase in the
objective function, the trust region is enlarged and the iteration is repeated,
with suitable safeguards to provoke a reduction in the objective function.
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If the objective function is bounded [3], for all values of the variables
which satisfy the constraints, then a local minimum point will be found
eventually.

Consider the optimization problem given in (42)—(44) and assume that
the objective function f e C? while g, heC!. Notice that the domain of the
optimization problem is over R" a convex space.

The problem can be written, without loss of generality as given in (50)—
(52) and the Kuhn-Tucker points for this problem will be given by deter-
mining suitable solutions to the following system:

VL (x,\)=Vf(x)—Vgx)"A>0, (57)
g (x) =0, (58)
x>0, (59)
1>0, (60)

T T Vf(x)—Vg(x)TA _
(x". 2 )( () )—0, 61)

which for simplicity, it is desired to represent in the following way.
Let

(V) =Vg)Ta
F(z)= ( 2(x) ) , (62)
T = (xT’ AT) ’ (63)
then:
F(z) >0, (64)
>0, (65)
T F (2)=0. (66)

This problem can be written as a variational inequality:
F (@' (y—2)>0. (67)
The solutions of the two problems are identical.

THEOREM 4.1. [40]. z € RP*4™*1 s a solution to the nonlinear comple-
mentarity systems (64)—(66) if and only if

220, F@Gy-220, Vy=0. (68)
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Proof. (=) Let z be a solution to the nonlinear complementarity prob-
lem. Then by (67) F(z)T y>0, Vy>0. Thus

F@Ql(y—2=F@"y—F(@)"z>0. (69)

(<) Let >0 be a solution to (67) and consider the vector y =z +e¢;
where e; is the unit vector in the chosen space. Thus F (z); >0 Vi and
thus F(z) >0.

Consider now y =0, there follows

F@ ' (y-2=F@"z<0, (70)
but as F (z) >0 and z >0, it follows that F(z)! z=0. O

There exists an equivalence also between a solution to a variational
inequality and a fixed point of a mapping.

THEOREM 4.2 [54]. Let K C R" be a closed convex set. Then, for every
X € R" there exists a unique point y such that: |x —y||<|x—zl|, VzeK.
The point y is the orthogonal projection of x on K with respect to the Eu-
cledian norm, ie. y=Prgx=argmin_ g |lx —z].

THEOREM 4.3 [54]. Let K C R" be a closed convex set, then y= Prigx if
and only if y' (z—y)=x" (z—y), Vzek.

THEOREM 4.4 Let K CR" be a closed convex set, then z*€ K is a solution
to the variational inequality if and only if for any y >0, z* is a fixed point,
such that:

7"=Prg (z* —yF (z*)) . (71)
Proof. (=) Let z* be a solution to the variational inequality

F (9" (y—z*) >0,Vy € K. Multiply this inequality by —y <0 and add
()T (y — z*) to both sides of the resulting inequality. There results:

) (y—2)= (" —vF () (y—2*), Vyek (72)

and therefore, z* = Prx (z* — y F (z%)).
(&) If z2*=Prg (z"—y F (z*)) for y >0, then

) (y—2)= (" —vF () (y—2*), Vyek (73)

and so F (z)' (y—z")>0, VyeKk. O
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Consider the application F: R" — R" and expand it in a Taylor series
around a point z' € R" to get:

F(@)=F(J)+VF () (z—7) (74)
then for any &; >0 there exists a scalar r >0 such that:
|F@-FE)+VFE) =) <elz=2]. v]z=Z|<r 79

as it has been proved [23].

Thus in a small enough neighbourhood, the approximation of the non-
linear complementarity problem by a linear complementarity problem will
result sufficiently accurate, so that instead of solving systems (64)—(66), the
linear complementarity system approximation can be solved. Recall that by
construction, the subspace of the Euclidean space is bounded and closed,
so that the following lemma can be applied, both to the nonlinear comple-
mentarity problem and to the linear complementarity approximation of it.

LEMMA 4.1 [33]. Let K CR" be a nonempty, convex and compact set and
let F: K — K be a continuous mapping. Then there exists a fixed point z* € K
for this mapping.

THEOREM 4.5 [27]. Given the nonlinear complementarity problems (64)—
(66) where F(z) is continuous, there exists a connected set S C R" such that:

1. Each z €S is a solution to the nonlinear complementarity problem such
that DI x =k <d;, one of the trust region constraints, restricted by the
scalar k,

2. For each value k € R, there exists a solution to the nonlinear comple-
mentarity problem z € S.

COROLLARY 4.1 [47]. Consider the linear complementarity problem repre-
sentation of (50)—(52) and a set S={u(t)|t € Ry} where u: Ry — R is a piece-
wise continuous mapping then.

1. Each n € S is a solution to the linear complementarity problem,
restricted to the subset D! x =k, so one of the trust region constraints
is binding.

2. For each k€ R, there exists an x € S which is a solution to the linear
complementarity problem.

It has been shown that every linear complementarity problem can be
solved, or a solution can be shown not to exist by solving an appropriate
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parametric linear programming problem in a scalar variable [60]. The algo-
rithm will find the solution of the linear complementarity problem, if such
a solution exists such that ||x| <«, for some constant « > 0, or declare that
no solution exists, so bounded. In this case the bound can be increased.

The convergence of our algorithm can now be demonstrated. Consider a
point x” € R" such that F(x") >0 and therefore feasible. Determine a neigh-
bourhood, as large as possible, which can be indicated by:

0={zl|z=Z|<r}, (76)

where r is the coefficient defined above in (75).
Suppose that the acceptable tolerance to our solution is &, so that if
(z*)T F(z*) <&, then the solution is accepted. In this case, impose that:

err <2, (77)
[07

The local convergence of the algorithm is established in the following
theorem.

THEOREM 4.6 If the linear complementarity problem has a solution z*
where all the trust region constraints are not binding, then such a solution is
also a solution to the nonlinear complementarity problems (64)—(66) for which
F(z) >0 and (z*)T F(z*) <en.

Proof. Consider the solution z* of the linear complementarity problem
(57)—(61). Recall that o > e z* by construction and without loss of general-
ity, take o > 1. Consider this solution applied to the nonlinear complemen-
tarity problem, there will result:

|F(z¥)=F(2)+VF(2) (z*=2)| <& |z" 2| <err <eo. (78)
For the complementarity condition
@' FE) =) (FE—F@+VFE @ -2))< || eir<er,  (79)

which follows by the complementarity condition of the LCP and the
Cauchy-Schwartz inequality. Further as «a > e’z* > ||z*|| because of the
nonnegativity of the solution variables. Also &;r <2 so:

HTF(") < e (80)

THEOREM 4.7 Let the objective function be bounded for the nonlinear
optimization problems (42)—(44) and let the problem have a feasible solution,
then there exists a global minimum solution.
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Proof. By Theorem 4.6 each solution to the LCP is an approximate solu-
tion to the nonlinear complementarity problems (64)—(66). By Theorem 4.5
a connected set exists such that the nonlinear complementarity problem has
a solution within the trust region or on a constraint.

From this sequence choose a subsequence such that the value of the
objective function, as given by Equation (42) decreases.

Since the objective function is bounded not all the solutions can lie on
some trust region constraint, so a solution of the nonlinear complementar-
ity problem which lies within the trust region constraints must eventually
be determined. Let this solution be a local minimum to the nonlinear opti-
mization problem. By repeating this procedure the global minimum will be
determined. O

5. Conclusions

A SCM system should be modelled by nonlinear stochastic and dynami-
cal systems, since otherwise eventual simplifications in the representation
will lead to suboptimization and to the possibility that profitable policies
are not solutions to the model, since they cannot be represented by the
assumed model.

Thus the analysis must be carried out at the highest level of general-
ity with as few a priori assumptions as possible. Consequently managerial
insights and anectodotical evidence should be avoided, so a data driven
modelling system should be used.

As the representation will be dynamic and nonlinear, great complexi-
ties in the modelling of such a phenomenon will be encountered and it is
shown in this paper how to overcome these complexities and obtain a syn-
tactically correct solution, which is also semantically adequate.

Since stochastic disturbances and exogenous events will alter the trajecto-
ries of development and therefore, the realizability of the goals chosen, it is
essential that the reachability of the goals be ascertained periodically. Also
the controllability of the system must be checked, since after some distur-
bance it cannot be assured that the system is still controllable in the sense
desired. Finally, if the system is unobservable then there is no indication of
the policy that is being followed and if it is an optimal one.

If disturbances provoke instabilities in the system, it is important to be
aware of them, as policies may have to be modified, since it could be very
expensive for the firm to maintain an unstable equilibrium, such as respect-
ing a collaborative arrangement at a set price, when all the market forces
are acting towards a reduction in the price, say.

Thus dynamical systems theory seems to be indispensable as the model-
ling framework of a SCM.
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As relations must be estimated and optimal policy variables must be deter-
mined, to avoid potential suboptimization and biased estimates, a combined
estimation and optimization algorithm must be applied to solve simulta-
neously these two problems. In fact, not only can these two problems be
posed in a simultaneous fashion, but convergence results can be given, which
guarantee that the estimates will have the required properties and that the
optimal policy is the best one that can be formulated on the basis of the
evidence. The certainty equivalence results guarantee that the policy chosen
for the first period coincides with the one obtainable on the basis of a deter-
ministic problem rather than one subject to uncertainties.

In this work, we have examined the properties of such an approach in an
abstract setting, but its implementation to actual cases, should be apparent
and has been presented elsewhere, [21]. Starting from analytical account-
ing and budgeting systems and preliminary specifications of the functional
relations among the control variables, initial models are obtained, which
through iterative refinement, better and better models can be specified.
Through the dynamical models with the state space which is endogenously
determined, unobservable variables will be introduced in the system, which
can later be interpreted.
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